If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10v^2+19v+6=0
a = 10; b = 19; c = +6;
Δ = b2-4ac
Δ = 192-4·10·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*10}=\frac{-30}{20} =-1+1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*10}=\frac{-8}{20} =-2/5 $
| 6-2x=-9x+18 | | s/2=-5 | | (4d-1)(d-9)=0 | | -3(m-2=12 | | 4+4z/3=6 | | X2+5x-234=0 | | 2(5x-3)+2=-2 | | 5(y-3)=38 | | m/5=9/6 | | .25x+106=180 | | m/5=-9/6 | | 21y=38 | | 8/2=k/7 | | -16(3+3d)=144 | | 3x+(2x+4)=74 | | 8/7=5/n | | 2(x+3)^2+10=50 | | -6v+27=3(v-9) | | 8/7=k/7 | | -3(3x-9)=0 | | 10(4+s)=-40 | | 3x−4=20 | | 3x+84=32 | | 16t-13t=15 | | 6(y+1)=-3y-30 | | 9=1/2(x-2)^2 | | .6x+4.6=37 | | 36+19a-24a=6 | | 8x-7x+35=5x-29 | | 180=45+2a | | 1/6y+1=0 | | 9y-18=6(y+1) |